Gröbner geometry for skew-symmetric matrix Schubert varieties

نویسندگان

چکیده

Matrix Schubert varieties are the closures of orbits B×B acting on all n×n matrices, where B is group invertible lower triangular matrices. Extending work Fulton, Knutson and Miller identified a Gröbner basis for prime ideals these varieties. They also showed that corresponding initial Stanley-Reisner shellable simplicial complexes, derived related primary decomposition in terms reduced pipe dreams. These results lead to geometric proof Billey-Jockusch-Stanley formula polynomial, among many other applications. We define skew-symmetric matrix be nonempty intersections with subspace In analogy Miller's work, we describe natural generating set then compute basis. Using results, identify involving certain fpf-involution show likewise complexes. As an application, give explicit function symplectic Grothendieck polynomials. Our methods differ from can used new proofs some their as explain at end this article.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gröbner geometry of Schubert polynomials

Schubert polynomials, which a priori represent cohomology classes of Schubert varieties in the flag manifold, also represent torus-equivariant cohomology classes of certain determinantal loci in the vector space of n×n complex matrices. Our central result is that the minors defining these “matrix Schubert varieties” are Gröbner bases for any antidiagonal term order. The Schubert polynomials are...

متن کامل

Gröbner Geometry of Schubert Polynomials 1247

Given a permutation w ∈ Sn, we consider a determinantal ideal Iw whose generators are certain minors in the generic n × n matrix (filled with independent variables). Using ‘multidegrees’ as simple algebraic substitutes for torus-equivariant cohomology classes on vector spaces, our main theorems describe, for each ideal Iw: • variously graded multidegrees and Hilbert series in terms of ordinary ...

متن کامل

On the Geometry of Varieties of Invertiblesymmetric and Skew - Symmetric

denote the algebraic varieties of n n invertible symmetric and skew-symmetric matrices over a eld F, respectively. We rst show how the homotopy type of Sym(n; R) and the homology groups of Sk(n; R) can be determined using an alternative method to Iwasawa decomposition. Then, using recent results of Dimca and Lehrer, the weight polynomials of Sym(n; C) and Sk(n; C) are calculated.

متن کامل

Fe b 20 02 Gröbner geometry of Schubert polynomials

Schubert polynomials, which a priori represent cohomology classes of Schubert varieties in the flag manifold, also represent torus-equivariant cohomology classes of certain determinantal loci in the vector space of n×n complex matrices. Our central result is that the minors defining these “matrix Schubert varieties” are Gröbner bases for any antidiagonal term order. The Schubert polynomials are...

متن کامل

Gröbner Bases for Schubert Codes

We consider the problem of determining Gröbner bases of binomial ideals associated with linear error correcting codes. Computation of Gröbner bases of linear codes have become a topic of interest to many researchers in coding theory because of its several applications in decoding and error corrections. In this paper, Gröbner bases of linear codes associated to Grassmann varieties and Schubert v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2022

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.1016/j.aim.2022.108488